skip to main content


Search for: All records

Creators/Authors contains: "Kushnir, Yochanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Water availability in the Levant is predicted to decline due to global warming in the upcoming decades and is expected to substantially impact the region. Determining the long-term natural rainfall variability in this region is essential for understanding the regional hydroclimatic response to external climate forcings and for contex- tualizing future hydroclimate changes. The Dead Sea (DS), located in the southern Levant, is a closed-basin lake whose size varies as a function of water availability. Reconstructing DS lake-level variations through time provides a quantitative measure of the natural hydroclimate variability and can inform on the local hydroclimate response to changes in global climate. Here, we constructed an updated lake-level history of the Holocene DS by: 1) studying lake high-stands derived from a series of new cores collected in the DS southern basin, 2) re-dating of the two major Holocene high-stand exposures, and 3) compiling all previously published ages of Holocene DS lake-level markers (n = 296 radiocarbon ages). The results show that the early (10–6.1 kyr cal BP) and late Holocene (3.6–0 kyr cal BP) in the DS were predominantly wet albeit punctuated by dry intervals, whereas the middle Holocene (6.1–3.6 kyr cal BP) was most likely relatively dry. This pattern of two Holocene humid in- tervals is also evident in distillation records derived from Levant speleothem caves (which represent the inte- grated magnitude of rainout from the vapor source to the caves), indicating that rainfall intensity and total water availability were correlated throughout the Holocene. These two humid intervals occurred during high and low summer insolation conditions, suggesting that they were modulated by different climatic mechanisms. The predicted future drying in the Levant is of similar magnitude to the natural hydroclimate variability and thus, it is crucial to assess whether the anthropogenic drying is in- or out-of phase with the natural climate variability. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) both grossly underestimate the magnitude of low-frequency Sahel rainfall variability; but unlike CMIP5, CMIP6 mean historical precipitation does not even correlate with observed multi-decadal variability. We demarcate realms of simulated physical processes that may induce differences between these ensembles and prevent both from explaining observations. We partition all influences on simulated Sahelian precipitation variability into (1) teleconnections from sea surface temperature (SST); (2) atmospheric and (3) oceanic variability internal to the climate system; (4) the SST response to external radiative forcing; and (5) the “fast” (not mediated by SST) precipitation response to radiative forcing. In a vast improvement from previous ensembles, the mean spectral power of Sahel rainfall in CMIP6 atmosphere-only simulations is consistent with observed low-frequency variance. Low-frequency variability is dominated by teleconnections from observed global SST, and the fast response only hurts the performance of simulated precipitation. We estimate that the strength of simulated teleconnections is consistent with observations using the previously-established North Atlantic Relative Index (NARI) to approximate the role of global SST, and apply this relationship to the coupled ensembles to infer that both fail to explain low-frequency historical Sahel rainfall variability mostly because they cannot explain the observed combination of forced and internal variability in North Atlantic SST. Yet differences between CMIP5 and CMIP6 in mean Sahel precipitation and its correlation with observations do not derive from differences in NARI, but from the fast response or the role of other SST patterns.

     
    more » « less
  3. Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population. 
    more » « less
  4. Northwestern Europe has experienced a trend of increasingly wet winters over the past 150 years, with few explanations for what may have driven this hydroclimatic change. Here we use the Old World Drought Atlas (OWDA), a tree-ring based reconstruction of the self-calibrating Palmer Drought Severity Index (scPDSI), to examine this wetting trend and place it in a longer hydroclimatic context. We find that scPDSI variability in northwestern Europe is strongly correlated with the leading mode of the OWDA during the last millennium (1000–2012). This leading mode, here named the ‘English Channel’ (EC) mode, has pronounced variability on interannual to centennial timescales and has an expression in scPDSI similar to that of the East Atlantic teleconnection pattern. A shift in the EC mode from a prolonged negative phase to more neutral conditions during the 19th and 20th centuries is associated with the wetting trend over its area of influence in England, Wales, and much of northern continental Europe. The EC mode is the dominant scPDSI mode from approximately 1000–1850, after which its dominance waned in favor of the secondary ‘North–South’ (NS) mode, which has an expression in scPDSI similar to that of the winter North Atlantic Oscillation (NAO). We examine the dynamical nature of both of these modes and how they vary on interannual to centennial timescales. Our results provide insight into the nature of hydroclimate variability in Europe before the widespread availability of instrumental observations. 
    more » « less
  5. Abstract The physical mechanisms whereby the mean and transient circulation anomalies associated with the North Atlantic Oscillation (NAO) drive winter mean precipitation anomalies across the North Atlantic Ocean, Europe, and the Mediterranean Sea region are investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis. A moisture budget decomposition is used to identify the contribution of the anomalies in evaporation, the mean flow, storm tracks and the role of moisture convergence and advection. Over the eastern North Atlantic, Europe, and the Mediterranean, precipitation anomalies are primarily driven by the mean flow anomalies with, for a positive NAO, anomalous moist advection causing enhanced precipitation in the northern British Isles and Scandinavia and anomalous mean flow moisture divergence causing drying over continental Europe and the Mediterranean region. Transient eddy moisture fluxes work primarily to oppose the anomalies in precipitation minus evaporation generated by the mean flow, but shifts in storm-track location and intensity help to explain regional details of the precipitation anomaly pattern. The extreme seasonal precipitation anomalies that occurred during the two winters with the most positive (1988/89) and negative (2009/10) NAO indices are also explained by NAO-associated mean flow moisture convergence anomalies. 
    more » « less
  6. This paper examines the hydroclimate history of the Eastern Mediterranean (EM) region during the 10th to 14th centuries C.E., a period known as the Medieval Climate Anomaly (MCA), a time of significant historical turmoil and change in the region. The study assembles several regional hydroclimatic archives, primarily the Dead Sea reconstructed lake level curve together with the recently extracted deep-lake sediment record, the Soreq Cave speleothem record and its counterpart, the EM marine sediment record and the Cairo Nilometer record of annual maximum summer flood levels in lower Egypt. The Dead Sea record is a primary indicator of the intensity of the EM cold-season storm activity while the Nilometer reflects the intensity of the late summer monsoon rains over Ethiopia. These two climate systems control the annual rainfall amounts and water availability in the two regional breadbaskets of old, in Mesopotamia and Egypt. The paleoclimate archives portray a variable MCA in both the Levant and the Ethiopian Highlands with an overall dry, early-medieval climate that turned wetter in the 12th century C.E. However, the paleoclimatic records are markedly punctuated by episodes of extreme aridity. In particular, the Dead Sea displays extreme low lake levels and significant salt deposits starting as early as the 9th century C.E. and ending in the late 11th century. The Nile summer flood levels were particularly low during the 10th and 11th centuries, as is also recorded in a large number of historical chronicles that described a large cluster of droughts that led to dire human strife associated with famine, pestilence and conflict. During that time droughts and cold spells also affected the northeastern Middle East, in Persia and Mesopotamia. Seeking an explanation for the pronounced aridity and human consequences across the entire EM, we note that the 10th–11th century events coincide with the medieval Oort Grand Solar Minimum, which came at the height of an interval of relatively high solar irradiance. Bringing together other tropical and Northern Hemisphere paleoclimatic evidence, we argue for the role of long-term variations in solar irradiance in shaping the early MCA in the EM and highlight their relevance to the present and near-term future. 
    more » « less
  7. Abstract

    The largest sea surface temperature (SST) anomalies associated with Atlantic Multidecadal Variability (AMV) occur over the Atlantic subpolar gyre, yet it is the tropical Atlantic from where the global impacts of AMV originate. Processes that communicate SST change from the subpolar Atlantic gyre to the tropical North Atlantic thus comprise a crucial mechanism of AMV. Here we use idealized model experiments to show that such communication is accomplished by an “atmospheric bridge.” Our results demonstrate an unexpected asymmetry: the atmosphere is effective in communicating cold subpolar SSTs to the north tropical Atlantic, via an immediate extratropical atmospheric circulation change that invokes slower wind‐driven evaporative cooling along the Eastern Atlantic Basin and into the tropics. Warm subpolar SST anomalies do not elicit a robust tropical Atlantic response. Our results highlight a key dynamical feature of AMV for which warm and cold phases are not opposites.

     
    more » « less